# Literature Review and Previous Flood Barrier Tests - Slide Package

Sai Zhang, Zhegang Ma

March 2020



The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

# Literature Review and Previous Flood Barrier Tests - Slide Package

Sai Zhang, Zhegang Ma

March 2020

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

# Idaho National

Laboratory

# Literature Review and Previous Flood Barrier Tests

Sai Zhang, Ph.D. Zhegang Ma, Ph.D., P.E.

**Idaho National Laboratory** 

NRC Flood Barrier Testing Strategies Workshop March 12, 2020 Rockville, MD USA



#### **Presentation Outline**

- Literature Review
- Plant-Specific Flood Barrier Types and Performances
- Examples of Previous Flood Barrier Tests



#### I. Literature Review

#### Reviewed Materials from a Variety of Sources

- Domestic Agencies
  - United States Nuclear Regulatory Commission (NRC)
  - United States Army Corps of Engineers (ACE)

#### International Agency

 Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD NEA)

#### Industry and Academia

- Nuclear Energy Institute (NEI)
- Electric Power Research Institute (EPRI)
- Licensee flooding walkdown reports
- Nuclear power plant (NPP) decommissioning information
- Idaho National Laboratory (INL) and Idaho State University (ISU)
- Relevant publications in scientific journals and conferences
- Publicly available information from flood barrier vendors



# I. Literature Review (cont.)

#### List of Reviewed Materials

#### ■ NRC

#### Materials Related to Flood Barriers

- Regulatory Guide 1.102, Rev. 1, "Flood Protection for Nuclear Power Plants," 1976
- Japan Lessons-learned Project Directorate, Interim Staff Guidance, JLD-ISG-2012-05, Rev.0, "Guidance for Performing the Integrated Assessment for External Flooding," 2012
- Draft NUREG report, "Development of a Performance Testing Protocol for Nuclear Power Plant Flood Penetration Seals," in progress
- Reports prepared by NRC contractors, including Fire Risk Management, Inc. and Center for Nuclear Waste Regulatory Analyses

#### Materials Related to Fire Barriers or Fire Tests

- NUREG/CR-0152, "Development and Verification of Fire Tests for Cable Systems and System Components," 1978
- NUREG/CR-2377, "Tests and Criteria for Fire Protection of Cable Penetrations," 1981
- NUREG-1552, "Fire Barrier Penetration Seals in Nuclear Power Plants,"
   1996



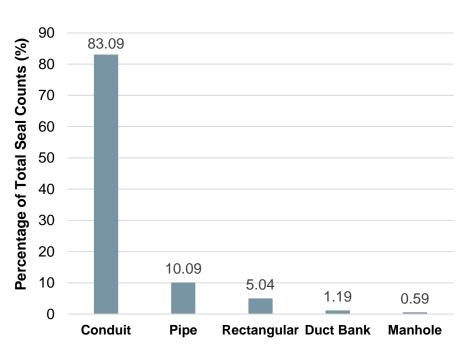
# I. Literature Review (cont.)

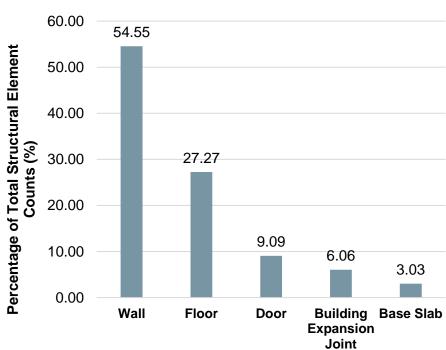
- List of Reviewed Materials (cont.)
  - ACE Engineering Research and Development Center (ERDC)
    - ERDC TR-07-3, "Flood-Fighting Structures Demonstration and Evaluation Program: Laboratory and Field Testing in Vicksburg, Mississippi," 2007
    - ERDC/CHL TR-15-3, "Technical Basis for Flood Protection at Nuclear Power Plants," 2015
  - OECD NEA
    - NEA draft report, "Concepts and Terminology for Protecting Nuclear Installations from Flood Hazards," in progress
  - □ NEI
    - NEI 12-07, Rev. 0-A, "Guidelines for Performing Verification Walkdowns of Plant Flood Protection Features," 2012
  - EPRI
    - Product 3002005423, "Flood Protection Systems Guide," 2015
    - Presentation, "External Flood Seal Risk-Ranking Process," 2019



# I. Literature Review (cont.)

- List of Reviewed Materials (cont.)
  - Licensee Walkdown Reports
    - Flooding walkdown reports of a reference NPP, 2013 2014
  - □ INL & ISU
    - Pope et al., "Light Water Reactor Sustainability Program, Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status (INL/EXT-17-42728)," 2017
    - Wells et al., "Non-watertight door performance experiments and analysis under flooding scenarios," Results in Engineering, 2019
  - Others (ongoing)
    - NPP decommissioning info, vendor info, and scientific publications
- Outputs of Literature Review
  - Generic categorization of flood barriers in NPPs
  - □ Plant-specific flood barrier types and performances (to be presented in part II)
  - Existing and potential flood barrier testing facilities
  - Examples of previous flood barrier tests (to be presented in part III)
  - ☐ Insights for future flood barrier testing strategy development





- Reviewed Flooding Walkdown Reports of a Reference Plant
  - Most of inspected protection features in the plant are flood barriers
  - Most of inspected flood barriers are incorporated into the plant

| Feature Type                            | Classified as Barrier | Barrier Type | Percentage |
|-----------------------------------------|-----------------------|--------------|------------|
| Seal                                    | Yes                   | Incorporated | 79.11%     |
| Structure                               | Yes                   | Incorporated | 7.75%      |
| Drain                                   | No                    | n/a          | 7.51%      |
| Scupper                                 | No                    | n/a          | 3.76%      |
| Dike                                    | Yes                   | Exterior     | 0.94%      |
| Sump                                    | No                    | n/a          | 0.70%      |
| Monitor Well                            | No                    | n/a          | 0.23%      |
| Percentage of Barrier-Type Features     |                       |              | 87.79%     |
| Percentage of Non-Barrier-Type Features |                       |              | 12.21%     |



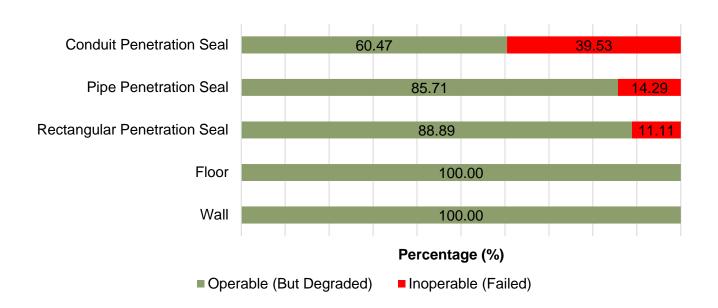
#### Flood Barrier Types in the Reference Plant





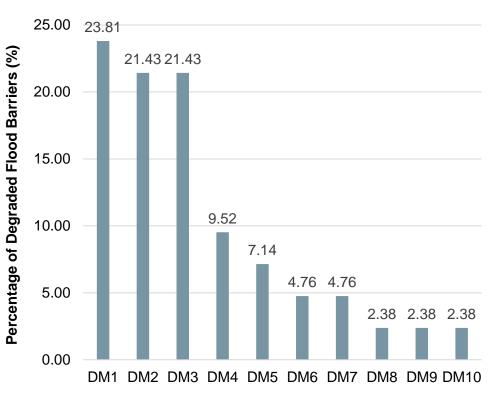
**Penetration Seals** 

**Structural Elements** 




#### Flood Barrier Performances in the Reference Plant

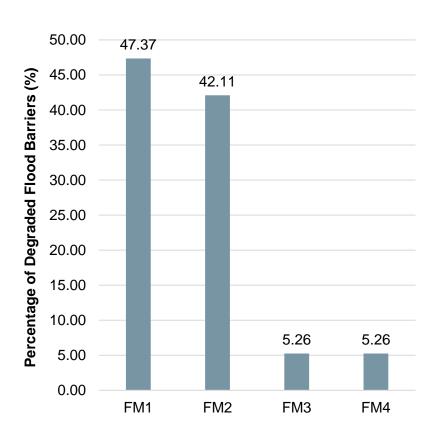





Flood Barrier Performances in the Reference Plant (cont.)






#### Degraded Flood Barriers in the Reference Plant



| No.  | Degradation Mode (DM)                                                                                |
|------|------------------------------------------------------------------------------------------------------|
| DM1  | Corrosion on penetration and signs of water seepage on wall.                                         |
| DM2  | Staining on wall below penetration or at construction joints of penetration and immediately below.   |
| DM3  | No seal could be observed for this penetration.                                                      |
| DM4  | Staining on wall and corrosion on penetration.                                                       |
| DM5  | Extensive corrosion on penetration sleeves and stalactite growth underneath the penetration and cap. |
| DM6  | Cracks greater than 0.04" wide in the wall/floor slab.                                               |
| DM7  | Penetration covered by a catch and inaccessible. Staining on the wall below the catch.               |
| DM8  | Staining on penetration and signs of water seepage on wall.                                          |
| DM9  | Cracks greater than 0.04" wide in the grout sealing penetration and slight staining below pipes.     |
| DM10 | Due to an obstructed view, an internal seal for this pipe sleeve could not be verified.              |



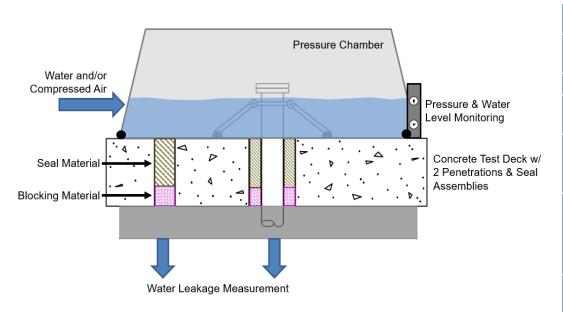
#### Failed Flood Barriers in the Reference Plant



| No. | Failure Mode (FM)                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------|
| FM1 | Penetration seals appeared severely degraded. Signs of past water intrusion on walls underneath.       |
| FM2 | Water intrusion through penetrations observed at roughly 40 drops per minute during a light rainstorm. |
| FM3 | Penetrating conduit was cut and uncapped.                                                              |
| FM4 | Penetrating conduit was cut and uncapped. A seal inside the penetrating conduit was not visible.       |



#### Performance Metrics of Flood Barriers in the Reference Plant


- Could possibly act as an input for development of flood barrier testing strategy
  - Failure probability could be one of multiple factors to be considered for test prioritization

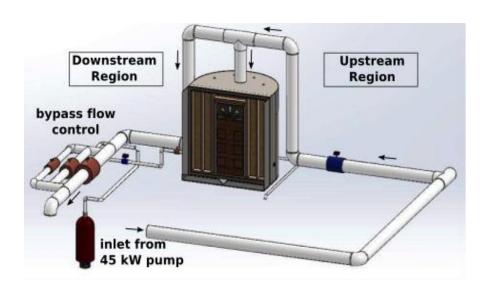
| Flood Barrier                | Probability |             |         |
|------------------------------|-------------|-------------|---------|
| Flood Barrier                | Success     | Degradation | Failure |
| Conduit Penetration Seal     | 0.82        | 0.11        | 0.07    |
| Rectangular Penetration Seal | 0.44        | 0.50        | 0.06    |
| Pipe Penetration Seal        | 0.79        | 0.18        | 0.03    |
| Floor                        | 0.89        | 0.11        | 0.00    |
| Wall                         | 0.94        | 0.06        | 0.00    |
| Building Expansion Joint     | 1.00        | 0.00        | 0.00    |
| Door                         | 1.00        | 0.00        | 0.00    |
| Manhole Seal                 | 1.00        | 0.00        | 0.00    |
| Duct Bank Seal               | 1.00        | 0.00        | 0.00    |



# III. Examples of Previous Flood Barrier Tests

#### Test 1 – Penetration Seals, Ex-Situ




Framatome Laboratory Flood Testing Facility (Lynchburg, VA)

| Flood Barrier Type          | Penetration seals                                                                                   |
|-----------------------------|-----------------------------------------------------------------------------------------------------|
| Testing Location            | Ex-situ                                                                                             |
| Facility Type               | Test deck with pressure chamber                                                                     |
| Testing Type                | Destructive                                                                                         |
| Included Tests              | Hydrostatic, hydrodynamic                                                                           |
| Test Variables              | Water pressure, duration of applied pressure, rate of pressure change                               |
| Test Measurements           | Test chamber pressure, water temperature, water volumetric flow rates from individual seals         |
| Test Termination            | Until maximum test duration was exceeded, or seal failure occurred                                  |
| Test Outputs<br>(Numerical) | Test duration, maximum water pressure, pressure vs. time graphs, leakage flow rates vs. time graphs |



# III. Examples of Previous Flood Barrier Tests (cont.)

#### Test 2 – Non-watertight Doors, Ex-Situ



Idaho State University Flood Testing Facility (Pocatello, ID)

| Flood Barrier Type          | Doors                                                                                                                        |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Testing Location            | Ex-situ                                                                                                                      |
| Facility Type               | Tank                                                                                                                         |
| Testing Type                | Destructive                                                                                                                  |
| Included Tests              | Hydrostatic, hydrodynamic                                                                                                    |
| Test Variables              | Tank filling rate                                                                                                            |
| Test Measurements           | Flow rates into the tank, tank water depth, water temperature, small leakage rates, pressures for simulated hydrostatic head |
| Test Termination            | Until door failure, the water leakage rate equalizing, or exceeding the filling rate                                         |
| Test Outputs<br>(Numerical) | Time to failure, failure water depth, water depth vs. time graphs                                                            |



# III. Examples of Previous Flood Barrier Tests (cont.)

- Tests 3 & 4 Temporary Flood Barriers, Ex-Situ
  - Test Sample
    - ACE sandbag barrier
    - Three commercial barriers

|                          | Test 3                                                                                                                                                                                               | Test 4                                                                                                                                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flood Barrier Type       | Temporary barriers                                                                                                                                                                                   | Temporary barriers                                                                                                                                                                                               |
| Testing Location         | Ex-situ                                                                                                                                                                                              | Ex-situ                                                                                                                                                                                                          |
| Facility Type            | Natural site                                                                                                                                                                                         | Research basin                                                                                                                                                                                                   |
| Testing Type             | Destructive                                                                                                                                                                                          | Destructive                                                                                                                                                                                                      |
| Included Tests           | Hydrostatic, hydrodynamic                                                                                                                                                                            | Hydrostatic, hydrodynamic, overtopping, debris impact                                                                                                                                                            |
| Test Variables           | Natural flooding                                                                                                                                                                                     | Water level, wave size, wave duration, debris size                                                                                                                                                               |
| Test Measurements        | Water levels in seepage collection pits, time history of construction/testing/removal of tested barriers, barrier dimensions                                                                         | Water levels in seepage collection pits, time history of construction/testing/removal of tested barriers, barrier dimensions                                                                                     |
| Test Termination         | Until a barrier was overtopped by water flowing freely over the barrier and exceeding pump capacity on the protected side                                                                            | Until maximum test duration was exceeded or barrier failure occurred                                                                                                                                             |
| Test Outputs (Numerical) | Seepage flow rates, seepage rate vs. wetted perimeter area graphs, seepage rate vs. stage of the river graphs, operational concerns (e.g., ease of construction, barrier durability and reusability) | Seepage flow rates, barrier displacements, seepage per linear foot vs. time graphs, seepage & overtopping vs. time graphs, operational concerns (e.g., ease of construction, barrier durability and reusability) |



# III. Examples of Previous Flood Barrier Tests (cont.)

#### Summary

- Tested flood barriers included:
  - Permanent barriers
  - Temporary barriers
- All the tests were ex-situ
- All the tests were destructive
- ☐ All the tested flood barriers were new without aging or degradation

